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1. Introduction. In  the near-vacuum environment of space vehicles, 
heat transfer to or from a given structure is predominantly a radiative 
phenomenon. For relatively few cases, however, is the structural geometry 
such that predictions can be achicved in a general form. The present paper 
deals with an idealization of practical interest for which theoretical pre- 
dictions can, in fact, be given explicitly. I n  the case under study, the 
dependence of the heat transfer upon parametric values of structural 
emissivity, absorptivity, and thermal conductivity is thus exhibited ana- 
lytically. 

We shall be concerned with a thin, conducting cylindrical shell, either 
closed or open but of sufficient length that a two-dimensional idealization is 
possible and heat transfer is calculated in a cross section. An external 
source of radiation is assumed. The thermal conductivity of the shell is 
known and the radiative emission from the inner and outer surfaces is 
taken to be diffuse; also, 110 dependence on radiation wavelength is em- 
ployed and a gray body type analysis is thus used. 

an integro-differential equation. Two further restrictions make the solution 
feasible : first, temperature ranges should be sufficiently restricted that 
perturbation methods apply; second, the radiative influence function that 
is the kernel of the integral term should be amenable to analytic treatment. 
The first restriction is made as an initial assumption; its validity for par- 
ticular values of the parameters can be tested subsequently. The second 
restriction leads naturally to the consideration of circular arc sections. 

The resulting integro-differential equation has appeared in more or less 
restrictive form in the literature. In  a classical paper Jensen [l] studied the 
heat transfer between two bodies of different temperature, one of them 
entirely surrounding the other, and was led to an integral equation that was 
formally similar. More recently, Frank and Gray [a] and Parkes [3] treated 
simpler cases of the present physical problem. In each of these papers an 
eigenfunction type analysis was used which resulted in infinite series solu- 
tions following quadrature of the radiation source function. The present 
results extend the generality and show that the series can be summed. The 

I Success in treating this problem becomes essentially a matter of solving 

* Received by the editors October 15, 1962, arid in final revised form July 29, 1963. 
Ames Itesenrch Crntcxr, Kntionnl Ac.rori:tritic*s arid SSpacc Administration, Moffett 

Field, California. 

13G 

e 
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method of attack is a natural extension of the td-iiiique employed by 
Heaslet and Lomax [A] to study nonconducting structures, namely, the 
reduction of the governing equation to a higher order dfierential equation. 
Here, and in [4], inversions are given that are apparently novel. E. M. 
Sparrow [5] has recently studied radiating, nonconducting cylindrical 
surfaces by ailalytical methode similar to those employed in [-I]. Sparrow's 
work, which came to the author's attention during the editorial review of 
the  present^ paper, treats both diffusely and specularly reflecting surfaces. 

Important symbols to be used are listed below: 

U 

radius of cylinder cross section (Fig. 1 ) ; 
energy flux (caI/cniBec) leaving a surface; 
incident radiation ( cal/cni2sec), normal t,o surface, from 

external source; 
f ( 0) /UT:;  
energy flux (cal/cm2sec) impinging on a surface; 

thermal conductivity [ (.&J ( 3 ' 1  ; 
a2u T:/kt ; 
thickness of cylinder wall (Fig. 1 ) ;  
temperature ; 
average temperature, see (Gb) ; 
T 
1 

1; _ -  
TO 

I 

I 

a1 

a2 

B see ( loa) ; 
A(!, g)  see after (15) ; 
Q 

e 
V see (loa) ; 
(r Stefan-Bolttnian constant; 
2$ 

absorptivity, outer surface of cylinder; 
absorptivity, inner surface of cylinder: 

emissivity, outer surface of cylinder; 
emissivity, inner surface of cylinder; 

angular extent of cross section of cylinder (Fig. I ). 

2. The governing equation. We take the basic configuration to be a long 
shell with cross section specified as a circular arc. Fig. 1 shows a section 
normal to the axis of the cylinder. It is assumed at the outset that differ- 
ences can exist between the constant absorptivity a and emissivity E of a 
surface, thus allowing for the possibility of a high teniperature radiation 
source and a surface emissivity corresponding to a much lower tempera- 
ture. Subscripts 1 and 2 are used to denote conditions on the outer and 
inner surfaces, respectively. The thermal conductivity k of the material is 
assumed constant throughout. We assume f/a << 1 and proceed to the 
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FIG. 1. F I G .  2 .  

developnient of a thin shell theory in which the gradient of temperature 

thc axis of syninietry of the arc, positive values corresponding to a counter- 
clockwise rotation. Thus over the full extent of the shell 0 covers the range 

through the shell is neglected. The angular coordinate 0 is measured from . I  

from -9 to 9. 
The governing equations are derived 

incnt of area shown in Fig. 2 .  For unit 
element, the following balaiices occur: 
external face 

( l a )  Bl(e) = t l a ~ 4 ( e )  + 
internal face 

through considerat>ion of the clc- 
depth normal to the plane of the 

energy balaiice within skin 
I 

In ( l a ) ,  B1( e )  is the energy flux (cal/cm2scc) of diffuse radiation from 
the external face. This flux is equal to thc emissive power of unit 
area according to the Stefan-Boltzmann law, e ) ,  plus the reflected 
portion of the incident radiation flux distribution, (1  - a l ) j ( e ) ,  where 
f ( 0 )  is nieasurcd in cal/cm*sec. The reflectivity factor p1 = 1 - a1 holds 
for opaque surfaces. 

I n  ( l b ) ,  & ( e )  is thc energy flux froin tlic internal face. This flux is 
equated to the cinissivc power per unit area, ~ ~ ~ ? ' ~ ( e ) ,  plus the reflected 
portion of the incoining flux froin within the enclosure. The incoming flux 

1 
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of radiation is denoted H2( 0)  and is given by 
* 

-* H,(e)  = 1 B,(el) dF8.8, , ( 2 )  

where the integral sums the contribution of emission froin elements of arc 
along the iiiner face of the enclosure and d F s . ~ ,  is the comentional angle 
factor that measures the intensity a t  the position 8 of the eniission from the 
surface element a t  el . Equation (2)  implies that there is no radiation 
inipinging on the cylinder from the left in Fig. 1. If it were desired to include 
such 2 feature, it ~ o u l d  be necessary to add terms to (2) which would take 
it into account. This would necessitate soiiie care being taken in the treat- 
ment of possible shadow zones in the interior portion of the partially open 
cylinder, but the nature of the analysis remains essentially unchanged. For 
a circular arc the two-dimensional angle factor for diffuse radiation takes 
the particularly simple form 

where the bars denote absolute values of the argument. Equations ( l b )  
and (2) thus combine to yield 

Equation ( IC) represents a balance between conduction and radiation. 
The first term is the difference between values a t  0 and 0 + dB of the con- 
ductive energy transport, as given by Fourier's law, along the interior of 
the shell. The additional terms yield the energy per unit time transported 
by radiation away from elemental portions of the exposed surfaces. 

Equation ( lb)  yields the relations 

c2 a ~ 4 ( e )  - (y2 & ( e )  
1 - a2 (4) & ( e )  - H 2 ( e )  = E2 d 4 ( e )  - az w2(e) = 

and these, together with (1) and (3 ) ,  give 

where the expression within the brackets in the integrand is the expression 
that appears within brackets on the left side of the equation (with 
replacing e ) .  
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Equation ( 5 )  is the integro-differeiitial expressioii that govc~ns tcnipera- 
ture distributioii for a prescribed input of radiat,ion j”( e) .  Nonlinear aiialysis 
is obviously rcquircd in general. Howcvci., for physical prohlcnis in M liich 
the magnitude of I’( 0)  has a restrictd variation, linearizatioii of the equa- 
tion is indicated. To this end, we first, introduce the diiiiensiodess variable 

where TO is the average temperature of the cylindrical section: 

Assume now that 

($1 = 1 + 4 u  (7) 
l 

is an adequate approximation. This can be examined a posteriori by inspec- 
tion of the solution. Using the approxiination of (7) ,  one gets the linearized 
form of (5) as , 

where F ( 0 )  = f(e>/.T:, N = a2gTl/kt  and, as previously, the terms 
within the brackets are functionally the same. The parameter N pro- 
vides a measure of the relative strengths of radiation effects and thermal 
conduction within the shell. This is more apparent when it is written in the 
form N = ( a a T ~ ) / ( k t T ~ / a ) .  

Equation (8) is to be solved for u( 0 )  as a functional of $( e ) .  Two bound- 
ary conditions are needed since the equation contains a second-order 
differential. These conditions are obtained by iniposiiig a radiation condi- 

tion at the extremities of the shell. Then, a t  0 = A+, -- - = w T 4 t .  If 

t / a  << 1, this becomes, using (6a) and (7) ,  

kt dT 
a de 

de = - - N E 2  (k) (1 + 4u) 0, 



TEMPERATURE DISTRIBUTION ON CYLINDRICAL SHELLS 141 

The necessary boundary conditions might also be obtained by prescribing 
the fixed temperatures Tl , T2 at which the ends of the arc are to  be held. 
I n  this case the conditions are 

Ti TZ 
To To u($) = - - 1, u( - lJ) = - - 1. 

The solution of (8) subject to the end conditions of (9) can be attained 
through a reduction of the integro-differential equation to a linear differen- 
tial equation. Operating upon (8) with (0’ + 4) where D 3 d /d8  we get, 
tshe fourth-order cquation 

where G(8) = F(0)  - L (4 + e-. The increase in order of the result- 
a1 

ing differential equat,ion introduces two additional arbitrary constants in 
the solution. No additional conditions are required, however, since the 
values of these constants will be h e d  through substitution of the general 
expression for u( 8) into the governing equation ( 8 ) .  

3. General solution. I n  this section we give the solution for (8), together 
with the boundary conditions (9), in the case of arbitrary angle $ (see 
Fig. 1). When this general solution has been determined, it will be spe- 
cialized, in the following section, to the case of a complete cylinder, $ = T ,  

for which some numerical results will be given. 
The first step will be to factor the quartic differential operator appearing 

on the left in (10). We write that equation as 

[(02 + v 2 ) ( ~ 2  - B ) I ~ ( o )  

where 

= -Nal  (L? + %) G(0) - - 1 N -  f f 2 e  

4 1 - f f2’  
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The last two relations are useful in the algebraic reductions. Operate on 
(loa) with the inverse [ ( D 2  + v') (0' - @)I-'; there results for the coefi- 
cient of G(0) 

(11) - - ( D 2 + v 2  D 2 - p 2  . 

Interpreting this operational form, we are led to the particular solution 

N v2 - az/4 + P2 + 4 4 )  

To this particular solution we must expect to add complementary solu- 
tions 

(13) 

so that the complete solution of (loa) is 

uc(e) = A ,  cos ve  + B, sin ve  + A ,  cosh pe + B2 sinh 00, 

(14) u(e)  = u,(e) + uc(e). 

The arbitrary constants .4, , d z  , B, , R, are to he determined by resubstitu- 
tion into (8) and by use of the boundary conditions a t  e = ++ given by 
(9). Further., the valuc of 7'0 can be determined by an application of (6b) 
to the final form of the solution. 

First, let us note the result of substituting the value of u(0) given by 
(14) back into the integro-differential equation (8). In  the present nota- 
tion, the latter equation is 

(02 + v2 - p2 - 01,/4)u(e) 

The result of the substitution is a pair of linear equations involving the 
arbitrary constants A ,  , R, of (13 ) .  It is converiicnt to introduce the nota- 

tion A(S(+>,  '(+)I = l', .I' ', l ,  whereJ, y are functions of +, and the prime 

denotcs differentiation with respect to +. The two linear equations are 
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A(  cos 4, sin $fi) A (cosh P+, sin $9) -4 2 L41 + a2/4 + p2 2 
a2/4 - v2 

v2 + P2 L V 

and 

A(cos 4, cos f$) * (16b) = --[- Nal G(  01) sin dB1 
v2 + p’ V 

A(cosh b$, cos +$) ‘ 1, G(&) sinh Pel C,]. 
P 

+ 
The other necessary equations are found by applying the “radiation 

boundary condition” of (9) in the form du/dO = 0, e = .t+. The deriva- 
tive of the complementary solution is 

(17a) 

and the derivative of t,he particular solution is 

- - - V (  --Al sin 
dB 

+ B1 cos v e )  + p(A2 sinh pe + Bz cosh PO), 

Now, since we wish to evaluate the derivative at  8 = =t+, we note that 
sgn ($ - 0,) = +1 and sgn (-I - 0,) = -1 ,  so that the second pair of 
equations for A i ,  Bi can be written: 

-v s i n ( 4 ) A  + B sinh(P+)Az + Y cos(vJ.)B1 + P cosh(P+)Bz 
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It is convenient to add and subtract ( H a ,  b)  to get two separate sets of 
two equations each for the even compoiieiits ( A ,  , A 2 )  of u, and for the odd 
components ( B ,  , Elz ) .  Thus we get 

v sin(v$)Al - p sinh(pJ.)Az 

and 

Equations (16a, b) and (19a, b)  suffice for the determination of the four 
constants A,  , A 2 ,  Bl , Bz . There remains the matter of determination of 

the average temperature T O .  From (Gb) we have u( 0 )  dB = 0. Substi- 

tution of the solution given by (14) yields the equation 
I: 

Since A1 , A,  are now known, and F (  e) = f (  O)/aT;, (20) will give a rela- 
tion from which To can be found. This completes the derivation of the 
general solution. A summary of the formulae needed for the solution of the 
integro-differential equation (8) is given in the appendix. 
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4. Circular cylinder in uniform radiation field. We now specialize to the 
case of a complete closed arc J. = r and further to a uniform and parallel 
field of incident radiation. Then for the forcing function we have 

cose if leis- lr 

2’  
(21) fte> = e 

Since the ixput is synimctric in 0, we call expect that 31 = 6’2 = 0 in the 
solution. Equations ( 16a) and (19a) for determination of A1 , A2 become 

A2 
u sin u r  

a2/4 - Y 2  

p sinh pr 
4 4  + 82 Ai - 

r 

and 

(2%) 

Y sin u r  AI - j3 sinh pr AS 
? 

U 

1 - Y2 

sinh 2j3r 
- 

The solution of this pair of equations for A l  and A2 yields 

Nai e - v2)  cot A -- 
l - Y 2 + $  4 Y 

r 1, 

cos 1 r le  uTO4 1 - u2 a1 

2 I ( y sinvr 
e l + -  - . _ _ - - _  

Y 



146 MAX A. HEASLET AND FItANKLYlV B. FULLER I 

l and 

Equation (20) for the deterinination of To gives 

ti aTo4 or cTo4 = (:>e. n- l 

a1 e a =  _ _ _  (24) 

It is interesting to note that this relation follows much more easily from 
an over-all power balance for the cylinder, considered to be a t  the uni- 
forin temperature To : power input = e.(2a).cul and power output 
= ~,.uT~~.2na, so that, as before, 

I 

I 

a1 e = - - .  
€1 a 

Equations (23a, b)  for A ,  and A2 serve to deterniiiic the portion uc(0) 
of the entire solution. We must next write the expression for thc particular 
solution up( e) .  Using the function f (  0 )  defined in (21),  and substituting 
in(12),wefind 

u,(e) = ~ ~ 

', 5 
e - v- cos el sin v I e - el I de1 

uTo4v2 + p2 ( 2v 1; 

I 

- 

Nai 1 v2 - az/4 + v2 + p2 CY1 (El + &) (T- ~ o ~ v a c o ~ v e  

The integrals appearing in this expression will differ accordingly as 0 is 
less than 7r/2 or greater than ~ / 2 .  The result is, coiwidering 0 to lie in (0, T) 
only, because of the even symmetry, 

~~ 
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1 sin T cos ve - v cos 

1 cos sin ve 

147 

1 

+ -~ + ’ cosh p?r cosh ,BO) . 
B2 

The upper set of results holds for 0 5 0 5 f and the lower for I! < e 5 T. 
The two parts of the solution, up( 0 )  and u,( e) ,  can be combined to give 

2 2 

1 
4 ’  

- _  
+ p COS e cosh pe 

0’ [ 2 sinh (p?r/2) 

cosh p(?r - 0 )  
2 sinh (p?r/2) 

+ 1 p 
@ 1 + P2 

where once again the upper formulae hold for 0 5 0 5 and the lower for 

- < e 5 ?r. We note that the temperature difference hetween horizontally 2 
opposed points on the shell is particularly simple: 

2 I 

n- 

The inaxiinum temperature differelice occurs when 0 = 0. 
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It can be seen that if the conductivity is neglected in the formulation 
of the present problem, then from (8) the problem reduces to that of solving 
an integral equation that is linear in T4(  e ) .  It is interesting to determine 
whether the solution to the more general problem, given by ( 2 6 ) ,  reduces 
properly in the limit k --f 0 to the solution of the simpler problem. In  this 
limit N -+ 00, 

(28) 

Using these, together with the approximation (7),  in (26) we find 

1 - a2/4 a2/4 - v2 cos ue 

2 v  sin 5 a 
cos e + 1 - v* 1 - v2 

2 

which is just the answer obtained by solving the integral equation for 
( 

A difference between the exact and approximate results will now arise 
from the different approximations of TITo  as (1 + 4 2 ~ ) ” ~  and 1 + u. This 
circunistance suggests that for the low values of thermal conductivity, 
when N + 00, a new approximation might be useful. Thus let us “linearize” 
in terms of T4, taking as a new variable T = ( T / T o ) 4 .  The linearization 
now involves the approximation of 

with the above definition of v‘. 

d2 1 d2r 
de2 4 de2 by the single term - ( T / T o )  A --. Unfortunately, i t  seems difficult to 

justify this approxiniation since the second derivative d27/d02 vanishes in 
the range of interest, while the derivative d(  T / T o ) / d %  does not. It might be 
noted, however, that in the event N + w ,  which is the ease when con- 
ductivity is low, the derivative term in (5) is divided by the large number 
N and so it may not matter greatly that the approximation is not as good 
as it might be. 

If (5) is solved using the approximation -- (T /To)  A - - , where 

7 = ( T / T o ) 4 ,  the result is .(e) = ( T / T o ) 4  = 1 + 4u(%) ,  where u(0) is 

d2 1 d2r 
de2 4 de2 
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given in ( 2 6 ) .  The expression for temperature is now 

(30) TITU = (1 + 4~)" ' .  

The linearization used previously (see ( 7 ) )  led to  a truncated expansion 
of (30) : 

(30%) T/To = 1 + U. 
It is now suggested that formula (30) be used whenever conductivity is 
small. The value of condurtivity A- at &ich (30s) can be used may be 
decided by a comparison of the two results in any given set of cases with 
varying 5. This matter will be illustrated iiunierically in the next section. 

Kext let us consider the case of very large conductivity k .  The param- 
eter N --f 0 and from the definitions of v2 and pz (see ( loa)) ,  we have 
v2 --+ a2/4 and $ -+ 4Nel . Hence for k -+ 00, 

r cash Be 1 

. .  
I 

= 0. 

This result is in agreement with physical reasoning, because material of 
infinitely high conductivity will have a uniforni temperature, and this must 
be just TO , the value derived above on the basis of simple equilibrium con- 
siderations. 

6. Representative results. As data for obtaining some numerical results' 
the radiation field was chosen to correspond to that of the sun at about the 
distance of the earth therefrom. The value of the constant e in (21) is then 
the solar constant, which we take as e = 0.033 cal/cni2sec. The dimen- 
sions of the cross section were chosen to be a = 50 cin and t = 1 cm. The 
value of the Stefan-Boltzmann constant is u = 1.39 X (cal/crn2sec). 

There remain the absorptivities, emissirities, and the conductivity to be 
chosen. As an  example, let us consider the effect of varying conductivity 
from a value of 0 to higher values, while keeping the radiation paramet ers 
Q , a1, e2 , a2 fixed. Choose first el = 0.2, al = 0.5, t 2  = a2 = 1. The distri- 
bution for k = 0 is found from (29), and we note that the slope of the 

( 
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a tempcraturc distrihutioii is dih(~ontinuoi1s at  e = Ll graph of this tem- 

prrat,urc variatioii witli e is sliowii il l  13g. 3, wlicre it can 1 ) ~  sccii that thc 
point of discontinuity is also the point of iiiininiuni tcniperature. In this 
case of no heat transfer by conduction, thc rear of the cylinder can only be 
heated by radiation from the interior of the forward portion, and it is clear 
that the top and bottoiii portions (8 = f a / 2 )  are least favorably situated 
in this respect. This applies, of coursc, in th(. present instance of an oncon- 
iiig parallcl field of radiatioii inipinging upon the forward portioii of thv 
cylinder. 

The ability of the inaterial of the cylinder to conduct heat will aiiieliorate 
this effect, as can be seen in Fig. 3, where curves for positive values of IC 
also appear. These curves wcre calculated with the niodificatioii suggested 
in (30). The slope of the tciiiperature distribution is now continuous a t  

0 = , and the iiiiniiiiuiii teniperature no longer occurs a t  this position. In 

fact, increasing conductivity soon masks the entire effect, and for soiiic 1; 
slightly greater than 0.1 (1;ig. 3 ) ,  the niiiiiniuiii tciiiperature occurs a t  
e = 180". Higher valucs of li tend to decrease the total variation of tem- 
perature which approaches, as we have seen, the limit T = To as li ---f m . 

It is of interest however to inquire somewhat more closely into the pres- 

ence of a niininiuni temperature between e = - and e = a. If me differen- 

tiate (26) and set the derivative to zero, we find that there is a inininiuni 

in 

2 '  

a 
2 

a 
2 

< 8 < a if the following equation has a solution: 
2 

= Zi sinh p ( a  - e). 

Consider the behavior of each side of this equation near a - 0 = 0. The 
left side starts as jL(0)  2 v ( a  - e) and the right as .fR(e) = KP(a - e) .  
From a sketch, one easily sccs that because of the behavior of the sine and 
the hyperbolic sine there can be a solution only in the event that 

(32) v > KO. 

This is the criterion which determines whether conduction of heat smooths 
the distribution of temperature in the ring so that the nliniiiiuni tenipera- 
ture occurs a t  the rearniost point 0 = a. Use of this criterion gives results 
in agreement with those obtained visually froni Fig. 3; the critical value of 
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IO 

FIG. 3. Variation of temperature distribution with conductinily k ;  a1 = 0.5, q = 0.2, i '  a2 = E? = 1 .  

k ,  where the distribution ceases to have its miilimuni ahead of 0 = a, is 
slightly less than 0.2. 

6. Accuracy of approximation as shown by numerical results. The 
results for T / T o  for the cases studied above and calculated with TITo 
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FIG. 4 .  Comparison of two approximations for T/To 

- ~~~ 

8 ,  degrees 
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= 1 4 u are shown in Fig. 4. From these, the value of u(0) can be read 
directly, and it is seen that even for the low conductivities its value is rea- 
sonably small (less than 0.07). It appears reasonable to accept such results 
and neglect the nonlinear terms. One should note, however, that this con- 
clusion applies for a particular pair of values of e , cy1 . Higher values than 
the ones used here lead to larger values for u( e ) ,  and each case should be 
examined on its own merit. 

Some results from Fig. 3 are shown in Fig. 4 as dashed lilies to  give an  
idea of the range of applicability of the suggested improvenient of (30). 
Wc see that tilt: employment of this approximation improves the calcula- 
tions coilsiderably for low values of conductivity while niakmg little 
difference for the high values. Thus the use of the fourth root approxima- 
tion rather than the linear approximation seem to render the solution 
uniformly valid in IC. 

APPENDIX 

In this appendix we give in collected form the integro-differential equa- 

The equation to be solved is 
tion, its solution, and the necessary auxiliary formulae. 

1 a2 E2 l:G(el) sin-/ e - e, I dB1 - N -. 
2 1 1 - - 2  

The boundary conditions are 

The solution is 

(A3) u(0) = u,(B) + A ,  cos v0  + B1 sin v e  + A,cosh@ + B2sinh@, 

where 

sin Y I 6 - Or I de1 

1 E Z / f l  e - e l (  de1 +-----. 
4 1  -a2 1 
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The coilstants v2, p2 arc give11 hy 

For the boundary condition (A2 j , the equations for the deterinination of 
the constants il; , B,  are: 

1 [A(siii  sin ++j  

and 

1 * 
. L $ ( O l )  sin V$ sin ~ 8 1  del + -t "/*G(O1) sinhP$sinhpe,de, . 

2 -* 
Note that A(f(11.1, d+)) = .I' ' 1  g~ , where tha priiiies denote derivatives 

with respect to  +. 
If boundary conditions different from (A2) are desired, the requisite 

niodificatioils are rnadc to the second equation in each of the sets (A4a) 
and (A4h). The first equation in each set is a coiiscquciice of the method of 
solution (by reduction to an ordinary differential equation of higher order) 
and therefore does not depend upoii the boundary conditioils. 

i l  
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Some of the integrals which arise in the calculation of this solution are 
listed next. They are of interest in thenlselves, in addition to their utility 
in the solution of integral equations with kernels like that of (Al) .  In these 
integrals, the variables 0, O2 lie in the interval ( -+, +) 

COS cye, sinh B I e - el I de, L, 
[ - p  cos (YO + A (  cos 4, sinh 04) cosh pel. 2 

P + ff2 - -___ 

- (Y sin v 1 0 - O2 I + A(sin v$, sin 4) cos VO cos aez 

+ A(cos 4, cos 4) sin v0 sin a&]. 

Further conibinations involving hyperbolic functions can Le found by 
giving imaginary values to the parameters v and a;  for cxa~iipIe, the second 
formula above follows from the first by putting v = ip. 
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